Search results

Search for "substrate compliance" in Full Text gives 3 result(s) in Beilstein Journal of Nanotechnology.

Physical constraints lead to parallel evolution of micro- and nanostructures of animal adhesive pads: a review

  • Thies H. Büscher and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2021, 12, 725–743, doi:10.3762/bjnano.12.57

Graphical Abstract
  • might be potentially interesting for engineers as a kind of optimal solution by nature, the biomimetic implications of the discussed results are briefly presented. Keywords: adhesion; attachment devices; biomechanics; convergence; friction; substrate compliance; Review Animal attachment systems
PDF
Album
Review
Published 15 Jul 2021

Aquatic versus terrestrial attachment: Water makes a difference

  • Petra Ditsche and
  • Adam P. Summers

Beilstein J. Nanotechnol. 2014, 5, 2424–2439, doi:10.3762/bjnano.5.252

Graphical Abstract
  • faced by tires on roads of varying roughness and wetness has driven the development of theories that may be applicable to biological systems [50][51]. These theories are difficult to assess in a biological context, but an examination of the parameters, surface roughness, substrate compliance, friction
PDF
Album
Review
Published 17 Dec 2014

A nanometric cushion for enhancing scratch and wear resistance of hard films

  • Katya Gotlib-Vainshtein,
  • Olga Girshevitz,
  • Chaim N. Sukenik,
  • David Barlam and
  • Sidney R. Cohen

Beilstein J. Nanotechnol. 2014, 5, 1005–1015, doi:10.3762/bjnano.5.114

Graphical Abstract
  • performs better than the titania on the Si substrate (Figure 4). These results suggest the beneficial influence of a softer substrate in improving the scratch resistance of the titania films. We refer to this as a “cushioning effect”. Taking the Young's modulus as a measure of the substrate compliance
  • runs, and is included in the force balance. Figure 10 depicts the deformation and stress profiles resulting from the FEA model. These mappings give a good insight as to how the substrate compliance influences the behavior. With the stiffer silicon substrate the deformation is localized and small
PDF
Album
Full Research Paper
Published 10 Jul 2014
Other Beilstein-Institut Open Science Activities